Reevaluating Theoretical Analysis Methods for Optimization in Deep Learning

27 Sept 2024 (modified: 19 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Deep Learning, Optimization, Smooth, Convex, Sharpness
Abstract:

There is a significant gap between our theoretical understanding of optimization algorithms used in deep learning and their practical performance. Theoretical development usually focuses on proving convergence guarantees under a variety of different assumptions, which are themselves often chosen based on a rough combination of intuitive match to practice and analytical convenience. In this paper, we carefully measure the degree to which the standard optimization analyses are capable of explaining modern algorithms. To do this, we develop new empirical metrics that compare real optimization behavior with analytically predicted behavior. Our investigation is notable for its tight integration with modern optimization analysis: rather than simply checking high-level assumptions made in the analysis (e.g. smoothness), we verify key low-level identities used by the analysis to explain optimization behavior that might hold even if the high-level motivating assumptions do not. In general, we find that real optimizers often make progress even when typical optimization analysis suggests that they should not. This highlights a need for developing new theoretical frameworks that are better aligned with practice.

Supplementary Material: pdf
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10978
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview