SATER: A Self-Aware and Token-Efficient Approach to Routing and Cascading

ACL ARR 2025 May Submission7138 Authors

20 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large language models (LLMs) demonstrate remarkable performance across diverse tasks, yet their effectiveness frequently depends on costly commercial APIs or cloud services. Model selection thus entails a critical trade-off between performance and cost: high-performing LLMs typically incur substantial expenses, whereas budget-friendly small language models (SLMs) are constrained by limited capabilities. Current research primarily proposes two routing strategies: pre-generation routing and cascade routing. Both approaches have distinct characteristics, with cascade routing typically offering superior cost-effectiveness and accuracy despite its higher latency. To further address the limitations of both approaches, we introduce SATER, a dual-mode compatible approach that fine-tunes models through shortest-response preference optimization and a confidence-aware rejection mechanism. SATER significantly reduces redundant outputs and response times, while improving both the performance of pre-generation routing and the efficiency of cascade routing. Experiments across three SLMs and six datasets, varying in type and complexity, demonstrate that SATER achieves comparable performance while consistently reducing computational costs by over 50\% and cascade latency by over 80\%.
Paper Type: Long
Research Area: Efficient/Low-Resource Methods for NLP
Research Area Keywords: NLP in resource-constrained settings
Contribution Types: Approaches to low-resource settings, Approaches low compute settings-efficiency
Languages Studied: English
Submission Number: 7138
Loading