Keywords: Counterfactual Regret Minimization, Extensive-Form Games, Last-Iterate Convergence
TL;DR: We present the first parameter-free last-iterate convergence of Counterfactual Regret Minimization algorithms.
Abstract: To establish last-iterate convergence for Counterfactual Regret Minimization (CFR) algorithms in learning a Nash equilibrium (NE) of extensive-form games (EFGs), recent studies reformulate learning an NE of the original EFG as learning the NEs of a sequence of (perturbed) regularized EFGs. Hence, proving last-iterate convergence in solving the original EFG reduces to proving last-iterate convergence in solving (perturbed) regularized EFGs. However, these studies only establish last-iterate convergence for Online Mirror Descent (OMD)-based CFR algorithms instead of Regret Matching (RM)-based CFR algorithms in solving perturbed regularized EFGs, resulting in a poor empirical convergence rate, as RM-based CFR algorithms typically outperform OMD-based CFR algorithms. In addition, as solving multiple perturbed regularized EFGs is required, fine-tuning across multiple perturbed regularized EFGs is infeasible, making parameter-free algorithms highly desirable. This paper show that CFR$^+$, a classical parameter-free RM-based CFR algorithm, achieves last-iterate convergence in learning an NE of perturbed regularized EFGs. This is the first parameter-free last-iterate convergence for RM-based CFR algorithms in perturbed regularized EFGs. Leveraging CFR$^+$ to solve perturbed regularized EFGs, we get Reward Transformation CFR$^+$ (RTCFR$^+$). Importantly, we extend prior work on the parameter-free property of CFR$^+$, enhancing its stability, which is vital for the empirical convergence of RTCFR$^+$. Experiments show that RTCFR$^+$ exhibits a significantly faster empirical convergence rate than existing algorithms that achieve theoretical last-iterate convergence. Interestingly, RTCFR$^+$ show performance no worse than average-iterate convergence CFR algorithms. It is the first last-iterate convergence algorithm to achieve such performance. Our code is available at https://github.com/menglinjian/NeurIPS-2025-RTCFR.
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 21011
Loading