Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: time series imputation; time series interpolation; information bottleneck
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Time series imputation presents a significant challenge because it requires capturing the underlying temporal dynamics from partially observed time series data. Among the recent successes of imputation methods based on generative models, the information bottleneck (IB) framework offers a well-suited theoretical foundation for multiple imputations, allowing us to account for the uncertainty associated with the imputed values. However, directly applying the IB framework to time series data without considering their temporal context can lead to a substantial loss of temporal dependencies, which, in turn, can degrade the overall imputation performance. To address such a challenge, we propose a novel conditional information bottleneck (CIB) approach for time series imputation, which aims to mitigate the potentially negative consequences of the regularization constraint by focusing on reducing the redundant information conditioned on the temporal context. We provide a theoretical analysis of its effect by adapting variational decomposition. We use the resulting insight and propose a novel deep learning method that can approximately achieve the proposed CIB objective for time series imputation as a combination of evidence lower bound and novel temporal kernel-enhanced contrastive optimization. Our experiments, conducted on multiple real-world datasets, consistently demonstrate that our method significantly improves imputation performance (including both interpolation and extrapolation), and also enhances classification performance based on the imputed values.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: general machine learning (i.e., none of the above)
Submission Number: 4032
Loading