Keywords: Large Language Model, Autonomous Agent, Multi-Agent Collaboration, Interactive Reasoning
TL;DR: We examine the impact of scaling LLM agents in multi-agent task solving, extending traditional scaling from training (neuron collaboration) to inference (agent collaboration) & circumventing resource-intensive retraining via inference-time thinking.
Abstract: Recent breakthroughs in large language model-driven autonomous agents have revealed that multi-agent collaboration often surpasses each individual through collective reasoning. Inspired by the neural scaling law—increasing neurons enhances performance, this study explores whether the continuous addition of collaborative agents can yield similar benefits. Technically, we utilize directed acyclic graphs to organize agents into a multi-agent collaboration network (MacNet), upon which their interactive reasoning is topologically orchestrated for autonomous task solving. Extensive evaluations reveal that it effectively supports collaboration among over a thousand agents, with irregular topologies outperforming regular ones. We also identify a collaborative scaling law—the overall performance follows a logistic growth pattern as agents scale, with collaborative emergence occurring earlier than traditional neural emergence. We speculate this may be because scaling agents catalyzes their multidimensional considerations during interactive reflection and refinement, thereby producing more comprehensive solutions.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 18
Loading