Active Image IndexingDownload PDF

Published: 01 Feb 2023, Last Modified: 28 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Indexing, Copy detection, Image similarity search, Watermarking
TL;DR: In the context of image tracing, instead of watermarking an image with an ID, we slightly modify it to make its representation more indexing-friendly, which makes plain content-based indexing much more robust (62% → 100% accuracy for some settings).
Abstract: Image copy detection and retrieval from large databases leverage two components. First, a neural network maps an image to a vector representation, that is relatively robust to various transformations of the image. Second, an efficient but approximate similarity search algorithm trades scalability (size and speed) against quality of the search, thereby introducing a source of error. This paper improves the robustness of image copy detection with active indexing, that optimizes the interplay of these two components. We reduce the quantization loss of a given image representation by making imperceptible changes to the image before its release. The loss is back-propagated through the deep neural network back to the image, under perceptual constraints. These modifications make the image more retrievable. Our experiments show that the retrieval and copy detection of activated images is significantly improved. For instance, activation improves by $+40\%$ the Recall1@1 on various image transformations, and for several popular indexing structures based on product quantization and locality sensitivity hashing.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
8 Replies

Loading