Keywords: continual reinforcement learning, negative transfer, plasticity loss
TL;DR: We carry out extensive analysis on the negative transfer in continual reinforcement learning, and also propose a simple baseline, Reset & Distill (R&D) method.
Abstract: We argue that the negative transfer problem occurring when the new task to learn arrives is an important problem that needs not be overlooked when developing effective Continual Reinforcement Learning (CRL) algorithms. Through comprehensive experimental validation, we demonstrate that such issue frequently exists in CRL and cannot be effectively addressed by several recent work on either mitigating plasticity loss of RL agents or enhancing the positive transfer in CRL scenario. To that end, we develop Reset & Distill (R&D), a simple yet highly effective baseline method, to overcome the negative transfer problem in CRL. R&D combines a strategy of resetting the agent's online actor and critic networks to learn a new task and an offline learning step for distilling the knowledge from the online actor and previous expert's action probabilities. We carried out extensive experiments on long sequence of Meta World tasks and show that our simple baseline method consistently outperforms recent approaches, achieving significantly higher success rates across a range of tasks. Our findings highlight the importance of considering negative transfer in CRL and emphasize the need for robust strategies like R&D to mitigate its detrimental effects.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8652
Loading