Keywords: adversarial machine learning, security, robustness
TL;DR: We propose a novel detection method for adversarial examples which is highly effective in multiple domains.
Abstract: Deep Neural Networks (DNNs) have been shown to be vulnerable to adversarial examples. While numerous successful adversarial attacks have been proposed, defenses against these attacks remain relatively understudied. Existing defense approaches either focus on negating the effects of perturbations caused by the attacks to restore the DNNs' original predictions or use a secondary model to detect adversarial examples. However, these methods often become ineffective due to the continuous advancements in attack techniques. We propose a novel universal and lightweight method to detect adversarial examples by analyzing the layer outputs of DNNs. Through theoretical justification and extensive experiments, we demonstrate that our detection method is highly effective, compatible with any DNN architecture, and applicable across different domains, such as image, video, and audio.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8286
Loading