Not All Tasks Are Born Equal: Understanding Zero-Shot GeneralizationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Apr 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: Zero-Shot Learning, Multi-Task Learning, Transfer Learning
Abstract: Recent work has achieved remarkable zero-shot performance with multi-task prompted pretraining, but little has been understood. For the first time, we show that training on a small number of key tasks beats using all the training tasks, while removing these key tasks substantially hurts performance. We also find that these key tasks are mostly question answering (QA) tasks. These novel findings combined deepen our understanding about zero-shot generalization—training on certain tasks such as QA encodes general knowledge transferable to a wide range of tasks. In addition, to automate this procedure, we devise a method that (1) identifies key training tasks without observing the test tasks by examining the pairwise generalization results and (2) resamples training tasks for better data distribution. Empirically, our approach achieves improved results across various model scales and tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
11 Replies

Loading