Angles Don’t Lie: Unlocking Training‑Efficient RL Through the Model’s Own Signals

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM Efficiency, Data Optimization, Reinforcement Fine-Tuning, Training‑Efficient RFT
TL;DR: We present a model-aware approach that leverages the model’s own signals to dynamically choose training data, markedly boosting both training and data efficiency in RL fine-tuning.
Abstract: Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models (LLMs) suffer from sample inefficiency due to the redundant exposure of identical queries under uniform data sampling. While previous work has explored curriculum learning via heuristic difficulty metrics, these strategies exhibit limitations by neglecting the intrinsic learning signals generated by the model itself, thus leading to suboptimal training regimes. In this paper, we identify a model-inherent signal termed *angle concentration* that effectively reflects an LLM's capacity to learn from specific data. We theoretically and empirically demonstrate a correlation between the angular distribution of token hidden state vectors and the resulting gradient, revealing a learning preference for data exhibiting higher angle concentration. Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated RL framework. By leveraging the model's intrinsic angle concentration signal, GAIN-RL dynamically selects training data in each epoch, ensuring consistently impactful gradient updates and thus significantly enhancing overall training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves over a 2.5$\times$ acceleration in training efficiency across diverse mathematical and coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)'s efficient sampling yields data-efficient training, achieving better performance with half the original data compared to vanilla GRPO with full training data.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 4949
Loading