L4Q: Parameter Efficient Quantization-Aware Fine-Tuning on Large Language Models

22 Sept 2024 (modified: 21 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM, Fine-tuning, Quantization, PEFT, LoRA
TL;DR: We propose a layer design for effective joint quantization and fine-tuning, which achieves (a) higher accuracy and (b) faster inference speed than previous quantization aware PEFT methods, and (c) lower memory cost compared to QAT.
Abstract: Due to the high memory and computational costs associated with large language models (LLMs), model compression techniques such as quantization, which reduces inference costs, and parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA), which reduce training costs, have gained significant popularity. This trend has spurred active research into quantization-aware PEFT techniques, aimed at maintaining model accuracy while minimizing memory overhead during both inference and training. Previous quantization-aware PEFT methods typically follow a two-step approach: first, applying post-training quantization (PTQ) to model weights, followed by PEFT on the quantized model. However, recovering from the quantization error introduced by PTQ through fine-tuning has proven challenging. Additionally, most PTQ-based PEFT methods result in a mixture of low-precision quantized weights and high-precision adapter weights, limiting the efficiency of full quantization during inference. While a previous method attempted to address these issues, it still suffers from limited adaptability due to the constrained LoRA parameter structure required to produce fully-quantized models. To overcome these challenges, we propose L4Q, a method that integrates Quantization-Aware Training (QAT) with LoRA to effectively reduce quantization error. %, which effectively reduces quantization error, with LoRA. By employing a memory-optimized layer design, L4Q significantly reduces QAT’s memory overhead while producing fully-quantized weights, enabling effective adaptation to downstream tasks. Our experiments demonstrate that this combined approach to quantization and fine-tuning achieves superior accuracy compared to decoupled fine-tuning schemes, particularly in sub-4-bit quantization, positioning L4Q as an efficient QAT solution. Using the LLaMA model families and instructional datasets, we showcase L4Q’s capabilities in language tasks and few-shot learning.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2589
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview