A Critical Look At Tokenwise Reward-Guided Text Generation

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM, RLHF, Alignment, Model Efficiency, Reward Models, Sampling
TL;DR: We analyse some of the pitfalls of contemporary reward guided text generation methods, and present a principled approach with strong performance on several language generation benchmarks.
Abstract: Large language models (LLMs) can be improved by aligning with human preferences through fine-tuning---the so-called reinforcement learning from human feedback (RLHF). However, the cost of fine-tuning an LLM is prohibitive for many users. Due to their ability to bypass LLM fine-tuning, prediction-time tokenwise reward-guided text generation (RGTG) methods have recently been proposed. They use a reward model trained on full sequences to score partial sequences during decoding in a bid to steer the generation towards sequences with high rewards. However, these methods have so far been only heuristically motivated and poorly analyzed. In this work, we show that reward models trained on full sequences are not compatible with scoring partial sequences. To alleviate this issue, we propose to train a Bradley-Terry reward model on partial sequences explicitly, and autoregressively sample from the implied tokenwise policy during decoding time. We study the properties of this reward model and the resulting policy: We show that this policy is proportional to the ratio of two distinct RLHF policies. Our simple approach outperforms previous RGTG methods and performs similarly to strong offline baselines without large-scale LLM finetuning.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8231
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview