Keywords: large language models, watermark, model copyright, model infringement detection
Abstract: The powerful capabilities of LLMs stem from their rich training data and high-quality labeled datasets, making the training of strong LLMs a resource-intensive process, which elevates the importance of IP protection for such LLMs. Compared to gathering high-quality labeled data, directly sampling outputs from these fully trained LLMs as training data presents a more cost-effective approach. This practice—where a suspect model is fine-tuned using high-quality data derived from these LLMs, thereby gaining capabilities similar to the target model—can be seen as a form of IP infringement against the original LLM. In recent years, LLM watermarks have been proposed and used to detect whether a text is AI-generated. Intuitively, if data sampled from a watermarked LLM is used for training, the resulting model would also be influenced by this watermark. This raises the question: can we directly use such watermarks to detect IP infringement of LLMs? In this paper, we explore the potential of LLM watermarks for detecting model infringement. We find that there are two issues with direct detection: (1) The queries used to sample output from the suspect LLM have a significant impact on detectability. (2) The watermark that is easily learned by LLMs exhibits instability regarding the watermark's hash key during detection. To address these issues, we propose LIDet, a detection method that leverages available anchor LLMs to select suitable queries for sampling from the suspect LLM. Additionally, it adapts the detection threshold to mitigate detection failures caused by different hash keys. To demonstrate the effectiveness of this approach, we construct a challenging model set containing multiple suspect LLMs on which direct detection methods struggle to yield effective results. Our method achieves over 90\% accuracy in distinguishing between infringing and clean models, demonstrating the feasibility of using LLM watermarks to detect LLM IP infringement.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12782
Loading