Keywords: Large Language Models, Memorization, Empirical Study, Data Leakage, Privacy, LLMs, Dynamics, Interpretability, Mechanistic
TL;DR: We study "latent memorization" in AI models, showing that complex sequences can persist and be revealed later, even after a single encounter, and study how these latent memories can be recovered.
Abstract: Frontier AI systems are making transformative impacts across society, but such benefits are not without costs: models trained on web-scale datasets containing personal and private data raise profound concerns about data privacy and security. Language models are trained on extensive corpora including potentially sensitive or proprietary information, and the risk of data leakage, where the model response reveals pieces of such information, remains inadequately understood. Prior work has investigated that sequence complexity and the number of repetitions are the primary drivers of memorization. In this work, we examine the most vulnerable class of data: highly complex sequences that are presented only once during training. These sequences often contain the most sensitive information and pose considerable risk if memorized. By analyzing the progression of memorization for these sequences throughout training, we uncover a striking observation: many memorized sequences persist in the model's memory, exhibiting resistance to catastrophic forgetting even after just one encounter. Surprisingly, these sequences may not appear memorized immediately after their first exposure but can later be “uncovered” during training, even in the absence of subsequent exposures - a phenomenon we call "latent memorization." Latent memorization presents a serious challenge for data privacy, as sequences that seem hidden at the final checkpoint of a model may still be easily recoverable. We demonstrate how these hidden sequences can be revealed through random weight perturbations, and we introduce a diagnostic test based on cross-entropy loss to accurately identify latent memorized sequences.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12019
Loading