Average Certified Radius is a Poor Metric for Randomized Smoothing

ICLR 2025 Conference Submission6514 Authors

26 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Randomized Smoothing, Metric Evaluation
TL;DR: We show that the popular average certified radius metric is improper to evaluate randomized smoothing.
Abstract: Randomized smoothing is a popular approach for providing certified robustness guarantees against adversarial attacks, and has become a very active area of research. Over the past years, the average certified radius (ACR) has emerged as the single most important metric for comparing methods and tracking progress in the field. However, in this work, we show that ACR is an exceptionally poor metric for evaluating robustness guarantees provided by randomized smoothing. We theoretically show not only that a trivial classifier can have arbitrarily large ACR, but also that ACR is much more sensitive to improvements on easy samples than on hard ones. Empirically, we confirm that existing training strategies that improve ACR reduce the model's robustness on hard samples. Further, we show that by focusing on easy samples, we can effectively replicate the increase in ACR. We develop strategies, including explicitly discarding hard samples, reweighing the dataset with certified radius, and extreme optimization for easy samples, to achieve state-of-the-art ACR, although these strategies ignore robustness for the general data distribution. Overall, our results suggest that ACR has introduced a strong undesired bias to the field, and better metrics are required to holistically evaluate randomized smoothing.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6514
Loading