Distribution-Specific Agnostic Conditional Classification With Halfspaces

Published: 22 Jan 2025, Last Modified: 23 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Agnostic linear classification, PAC-learning, Intractability
Abstract: We study "selective" or "conditional" classification problems under an agnostic setting. Classification tasks commonly focus on modeling the relationship between features and categories that captures the vast majority of data. In contrast to common machine learning frameworks, conditional classification intends to model such relationships only on a subset of the data defined by some selection rule. Most work on conditional classification either solves the problem in a realizable setting or does not guarantee the error is bounded compared to an optimal solution. In this work, we consider selective/conditional classification by sparse linear classifiers for subsets defined by halfspaces, and give both positive as well as negative results for Gaussian feature distributions. On the positive side, we present the first PAC-learning algorithm for homogeneous halfspace selectors with error guarantee $\tilde{O}(\sqrt{\mathrm{opt}})$, where $\mathrm{opt}$ is the smallest conditional classification error over the given class of classifiers and homogeneous halfspaces. On the negative side, we find that, under cryptographic assumptions, approximating the conditional classification loss within a small additive error is computationally hard even under Gaussian distribution. We prove that approximating conditional classification is at least as hard as approximating agnostic classification in both additive and multiplicative form.
Supplementary Material: pdf
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5313
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview