Automating Large-scale In-silico Benchmarking for Genomic Foundation Models

22 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: genomic benchmark, DNA, RNA, foundation model
TL;DR: Propose a framework for automated genomic foundation model benchmarking
Abstract: The advancements in artificial intelligence in recent years, such as Large Language Models (LLMs), have fueled expectations for breakthroughs in genomic foundation models (GFMs). The code of nature, hidden in diverse genomes since the very beginning of life’s evolution, holds immense potential for impacting humans and ecosystems through genome modeling. Recent breakthroughs in GFMs, such as Evo, have attracted significant investment and attention to genomic modeling, as they address long-standing challenges and transform in-silico genomic studies into automated, reliable, and efficient paradigms. In the context of this flourishing era of consecutive technological revolutions in genomics, GFM studies face two major challenges: the lack of GFM benchmarking tools and the absence of open-source software for diverse genomics. These challenges hinder the rapid evolution of GFMs and their wide application in tasks such as understanding and synthesizing genomes, problems that have persisted for decades. To address these challenges, we introduce GFMBench, a framework dedicated to GFM-oriented benchmarking. GFMBench standardizes benchmark suites and automates benchmarking for a wide range of open-source GFMs. It integrates millions of genomic sequences across hundreds of genomic tasks from four large-scale benchmarks, democratizing GFMs for a wide range of in-silico genomic applications. Additionally, GFMBench is released as open-source software, offering user-friendly interfaces and diverse tutorials, applicable for AutoBench and complex tasks like RNA design and structure prediction. To facilitate further advancements in genome modeling, we have launched a public leaderboard showcasing the benchmark performance derived from AutoBench. GFMBench represents a step toward standardizing GFM benchmarking and democratizing GFM applications.
Supplementary Material: pdf
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2671
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview