Federated Optimization Algorithms with Random Reshuffling and Gradient Compression

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Machine Learning, Optimization, Federated Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We introduce new methods that incorporate Random Reshuffling schemes and Compression techniques.
Abstract: Gradient compression is a popular technique for improving communication complexity of stochastic first-order methods in distributed training of machine learning models. However, the existing works consider only with-replacement sampling of stochastic gradients. In contrast, it is well-known in practice and recently confirmed in theory that stochastic methods based on without-replacement sampling, e.g., Random Reshuffling (RR) method, perform better than ones that sample the gradients with-replacement. In this work, we close this gap in the literature and provide the first analysis of methods with gradient compression and without-replacement sampling. We first develop a naïve combination of random reshuffling with gradient compression (Q-RR). Perhaps surprisingly, but the theoretical analysis of Q-RR does not show any benefits of using RR. Our extensive numerical experiments confirm this phenomenon. This happens due to the additional compression variance. To reveal the true advantages of RR in the distributed learning with compression, we propose a new method called DIANA-RR that reduces the compression variance and has provably better convergence rates than existing counterparts with with-replacement sampling of stochastic gradients. Next, to have a better fit to Federated Learning applications, we incorporate local computation, i.e., we propose and analyze the variants of Q-RR and DIANA-RR -- Q-NASTYA and DIANA-NASTYA that use local gradient steps and different local and global stepsizes. Finally, we conducted several numerical experiments to illustrate our theoretical results.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4883
Loading