MetaPhysiCa: Improving OOD Robustness in Physics-informed Machine Learning

Published: 16 Jan 2024, Last Modified: 15 Apr 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: physics-informed machine learning, OOD robustness, meta learning, causal structure discovery
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: A fundamental challenge in physics-informed machine learning (PIML) is the design of robust PIML methods for out-of-distribution (OOD) forecasting tasks. These OOD tasks require learning-to-learn from observations of the same (ODE) dynamical system with different unknown ODE parameters, and demand accurate forecasts even under out-of-support initial conditions and out-of-support ODE parameters. In this work we propose to improve the OOD robustness of PIML via a meta-learning procedure for causal structure discovery. Using three different OOD tasks, we empirically observe that the proposed approach significantly outperforms existing state-of-the-art PIML and deep learning methods (with $2\times$ to $28\times$ lower OOD errors).
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Submission Number: 4081
Loading