Kick Bad Guys Out! Conditionally Activated Anomaly Detection in Federated Learning with Zero-Knowledge Proof Verification

27 Sept 2024 (modified: 13 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: outlier detection, FL security, defense, anomaly detection, zero-knowledge-proof
TL;DR: a two-stage defense method on FL that leverages ZKP for verification
Abstract: Federated Learning (FL) systems are susceptible to adversarial attacks, where malicious clients submit poisoned models to disrupt the convergence or plant backdoors that cause the global model to misclassify some samples. Current defense methods are often impractical for real-world FL systems, as they either rely on unrealistic prior knowledge or cause accuracy loss even in the absence of attacks. Furthermore, these methods lack a protocol for verifying execution, leaving participants uncertain about the correct execution of the mechanism. To address these challenges, we propose a novel anomaly detection strategy that is designed for real-world FL systems. Our approach activates the defense only when potential attacks are detected, and enables the removal of malicious models without affecting the benign ones. Additionally, we incorporate zero-knowledge proofs to ensure the integrity of the proposed defense mechanism. Experimental results demonstrate the effectiveness of our approach in enhancing FL system security against a comprehensive set of adversarial attacks in various ML tasks.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9187
Loading