SPAM: Stochastic Proximal Point Method with Momentum Variance Reduction for Nonconvex Cross-Device Federated Learning

Published: 10 Oct 2024, Last Modified: 07 Dec 2024NeurIPS 2024 WorkshopEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Stochastic Proximal Point Method, Federated Learning, Momentum, Nonconvex Optimization
Abstract: Cross-device training is a crucial subfield of federated learning, where the number of clients can reach into the billions. Standard approaches and local methods are prone to issues such as client drift and insensitivity to data similarities. We propose a novel algorithm (SPAM) for cross-device federated learning with non-convex and non-smooth losses. We provide sharp analysis under second-order (Hessian) similarity, a condition satisfied by a variety of machine learning problems in practice. Additionally, we extend our results to the partial participation setting, where a cohort of selected clients communicate with the server at each communication round.
Submission Number: 118
Loading