Commute Your Domains: Trajectory Optimality Criterion for Multi-Domain Learning

ICLR 2025 Conference Submission13953 Authors

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multi-domain learning, Lie bracket, Gradient dynamics, Domain interaction
Abstract: In multi-domain learning, a single model is trained on diverse data domains to leverage shared knowledge and improve generalization. The order in which the data from these domains is used for training can significantly affect the model's performance on each domain. However, this dependence is under-studied. In this paper, we investigate the influence of training order (or data mixing) in multi-domain learning using the concept of Lie bracket of gradient vector fields. By analyzing the infinitesimal effects of changing the training order, we identify regions in the parameter space where altering the order between two training domains can benefit the target loss. We validate the predictions of our theoretical framework on the influence of training order (or data mixing) both on a toy example and bilingual LLM pre-training.
Supplementary Material: zip
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13953
Loading