Keywords: photometric stereo; normal estimation; register; VIT
TL;DR: A novel photometric stereo framework that alleviates the coupling between illumination and normal features, enhances fine detail recovery using wavelet-based techniques, and achieves state-of-the-art performance with strong generalization.
Abstract: Universal photometric stereo (PS) is defined by two factors: it must (i) operate under arbitrary, unknown lighting conditions and (ii) avoid reliance on specific illumination models. Despite progress (e.g., SDM UniPS), two challenges remain. First, current encoders cannot guarantee that illumination and normal information are decoupled. To enforce decoupling, we introduce LINO UniPS with two key components: (i) Light Register Tokens with light alignment supervision to aggregate point, direction, and environment lights; (ii) Interleaved Attention Block featuring global cross-image attention that takes all lighting conditions together so the encoder can factor out lighting while retaining normal-related evidence. Second, high-frequency geometric details are easily lost. We address this with (i) a Wavelet-based Dual-branch Architecture and (ii) a Normal-gradient Perception Loss. These techniques yield a \textbf{unified} feature space in which lighting is explicitly represented by register tokens, while normal details are preserved via wavelet branch. We further introduce PS-Verse, a large-scale synthetic dataset graded by geometric complexity and lighting diversity, and adopt curriculum training from simple to complex scenes. Extensive experiments show new state-of-the-art results on public benchmarks (e.g., DiLiGenT, Luces), stronger generalization to real materials, and improved efficiency; ablations confirm that Light Register Tokens + Interleaved Attention Block drive better feature decoupling, while Wavelet-based Dual-branch Architecture + Normal-gradient Perception Loss recover finer details.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 18051
Loading