Keywords: Image Search, Composed Image Retrieval, Uncertainty Estimation
Abstract: The interactive task of composed image retrieval aims to retrieve the most relevant images with the bi-modal query, consisting of a reference image and a modification sentence. Despite significant efforts to bridge the heterogeneous gap within the bi-modal query and leverage contrastive learning to reduce the disparity between positive and negative triplets, prior methods often fail to ensure reliable matching due to aleatoric and epistemic uncertainty. Specifically, the aleatoric uncertainty stems from underlying semantic correlations within candidate instances and annotation noise, and the epistemic uncertainty is usually caused by overconfidence in dominant semantic categories. In this paper, we propose Robust UNcertainty Calibration (RUNC) to quantify the uncertainty and calibrate the imbalanced semantic distribution. To mitigate semantic ambiguity in similarity distribution between fusion queries and targets, RUNC maximizes the matching evidence by utilizing a high-order conjugate prior distribution to fit the semantic covariances in candidate samples. With the estimated uncertainty coefficient of each candidate, the target distribution is calibrated to encourage balanced semantic alignment. Additionally, we minimize the ambiguity in the fusion evidence when forming the unified query by incorporating orthogonal constraints on explicit textual embeddings and implicit queries, to reduce the representation redundancy. Extensive experiments and ablation analysis on benchmark datasets FashionIQ and CIRR verify the robustness of RUNC in predicting reliable retrieval results from a large image gallery.
Supplementary Material:  zip
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 21769
Loading