Attention-Guided Contrastive Role Representations for Multi-agent Reinforcement Learning

Published: 16 Jan 2024, Last Modified: 06 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Multi-agent reinforcement learning, contrastive learning, attention mechanism
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose an attention-guided contrastive role representation learning framework to promote behavior heterogeneity, knowledge transfer, and skillful coordination across agents for MARL.
Abstract: Real-world multi-agent tasks usually involve dynamic team composition with the emergence of roles, which should also be a key to efficient cooperation in multi-agent reinforcement learning (MARL). Drawing inspiration from the correlation between roles and agent's behavior patterns, we propose a novel framework of **A**ttention-guided **CO**ntrastive **R**ole representation learning for **M**ARL (**ACORM**) to promote behavior heterogeneity, knowledge transfer, and skillful coordination across agents. First, we introduce mutual information maximization to formalize role representation learning, derive a contrastive learning objective, and concisely approximate the distribution of negative pairs. Second, we leverage an attention mechanism to prompt the global state to attend to learned role representations in value decomposition, implicitly guiding agent coordination in a skillful role space to yield more expressive credit assignment. Experiments on challenging StarCraft II micromanagement and Google research football tasks demonstrate the state-of-the-art performance of our method and its advantages over existing approaches. Our code is available at [https://github.com/NJU-RL/ACORM](https://github.com/NJU-RL/ACORM).
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: reinforcement learning
Submission Number: 1047
Loading