Keywords: Large Language Models, Quantization, Rotation, Efficient inference
Abstract: Quantization plays a crucial role in accelerating the inference of large-scale models, and rotational matrices have been shown to effectively improve quantization performance by smoothing outliers. However, end-to-end fine-tuning of rotational optimization algorithms incurs high computational costs and is prone to overfitting. To address this challenge, we propose an efficient distribution-aware rotational calibration method, DartQuant, which reduces the complexity of rotational optimization by constraining the distribution of the activations after rotation. This approach also effectively reduces reliance on task-specific losses, thereby mitigating the risk of overfitting. Additionally, we introduce the QR-Orth optimization scheme, which replaces expensive alternating optimization with a more efficient solution. In a variety of model quantization experiments, DartQuant demonstrates superior performance. Compared to existing methods, it achieves 47$\times$ acceleration and 10$\times$ memory savings for rotational optimization on a 70B model. Furthermore, it is the first to successfully complete rotational calibration for a 70B model on a single 3090 GPU, making quantization of large language models feasible in resource-constrained environments.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 2223
Loading