Keywords: Graph Neural Network, Graph Classification
Abstract: Graph Neural Networks (GNNs) are pivotal in graph classification but often struggle with generalization and overfitting. We introduce a unified and efficient Graph Multi-View (GMV) learning framework that integrates multi-view learning into GNNs to enhance robustness and efficiency. Leveraging the lottery ticket hypothesis, GMV activates diverse sub-networks within a single GNN through a novel training pipeline, which includes mixed-view generation, and multi-view decomposition and learning. This approach simultaneously broadens "views" from the data, model, and optimization perspectives during training to enhance the generalization capabilities of GNNs. During inference, GMV only incorporates additional prediction heads into standard GNNs, thereby achieving multi-view learning at minimal cost. Our experiments demonstrate that GMV surpasses other augmentation and ensemble techniques for GNNs and Graph Transformers across various graph classification scenarios.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 9686
Loading