Keywords: City-scale 3D Vision, Aerial Navigation, 3D Vision and Language
TL;DR: City-scale Aerial Navigation
Abstract: Vision-and-language navigation (VLN) aims to guide autonomous agents through real-world environments by integrating visual and linguistic cues. Despite notable advancements in ground-level navigation, the exploration of aerial navigation using these modalities remains limited. This gap primarily arises from a lack of suitable resources for real-world, city-scale aerial navigation studies. To remedy this gap, we introduce CityNav, a novel dataset explicitly designed for language-guided aerial navigation in photorealistic 3D environments of real cities. CityNav comprises 32k natural language descriptions paired with human demonstration trajectories, collected via a newly developed web-based 3D simulator. Each description identifies a navigation goal, utilizing the names and locations of landmarks within actual cities. As an initial step toward addressing this challenge, we provide baseline models of navigation agents that incorporate an internal 2D spatial map representing landmarks referenced in the descriptions. We have benchmarked the latest aerial navigation methods alongside our proposed baseline model on the CityNav dataset. The findings are revealing: (i) our aerial agent model trained on human demonstration trajectories, outperform those trained on shortest path trajectories by a large margin; (ii) incorporating 2D spatial map information markedly and robustly enhances navigation performance at a city scale; (iii) despite the use of map information, our challenging CityNav dataset reveals a persistent performance gap between our baseline models and human performance. To foster further research in aerial VLN, we have made the dataset and code available at https://anonymous.4open.science/w/city-nav-77E3/.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9167
Loading