HATA: Trainable and Hardware-Efficient Hash-Aware Top-$k$ Attention for Scalable Large Model Inference

ACL ARR 2025 February Submission6717 Authors

16 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large Language Models (LLMs) have emerged as a pivotal research area, yet the attention module remains a critical bottleneck in LLM inference, even with techniques like KVCache to mitigate redundant computations. While various top-$k$ attention mechanisms have been proposed to accelerate LLM inference by exploiting the inherent sparsity of attention, they often struggled to strike a balance between efficiency and accuracy. In this paper, we introduce HATA (Hash-Aware Top-$k$ Attention), a novel approach that systematically integrates low-overhead learning-to-hash techniques into the Top-$k$ attention process. Different from the existing top-k attention methods which are devoted to seeking an absolute estimation of qk score, typically with a great cost, HATA maps queries and keys into binary hash codes, and acquires the relative qk score order with a quite low cost, which is sufficient for realizing top-k attention. Extensive experiments demonstrate that HATA achieves up to 7.2$\times$ speedup compared to vanilla full attention while maintaining model accuracy. In addition, HATA outperforms the state-of-the-art top-$k$ attention methods in both accuracy and efficiency across multiple mainstream LLM models and diverse tasks. To foster academic collaboration, we will open-source the HATA implementation soon.
Paper Type: Long
Research Area: Generation
Research Area Keywords: Inference methods;
Contribution Types: Approaches low compute settings-efficiency
Languages Studied: General
Submission Number: 6717
Loading