Keywords: Materials design, LLM, Property prediction, Reasoning model
Abstract: Closing the experimental loop in materials discovery requires process-aware recipe to property predictors that are accurate, calibrated, and physically admissible. We approach this as a reasoning problem with large reasoning models (LRMs). To instill reasoning capability into language models, we curate reasoning traces from a teacher model to train a student model. However, most training pipelines select reasoning traces using binary correctness or learned preference signals that poorly reflect physical admissibility. We introduce Physics-aware Rejection Sampling (PaRS), a training-time trace selection scheme that favors traces consistent with fundamental physics and numerically close to targets, with lightweight halting to control compute. We instantiate our framework with a large student model fine-tuned on traces synthesized by a larger teacher model, and evaluate under matched token budgets against various rejection sampling baselines. Our method improves accuracy and calibration, reduces physics-violation rates, and lowers sampling cost relative to baselines. These results indicate that modest, domain-aware constraints combined with trace-level selection provide a practical path toward reliable, efficient LRMs for process-aware property prediction and closed-loop materials design.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 16870
Loading