Boundary Effects in CNNs: Feature or Bug?Download PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Boundary Effects, Absolute Position Information, Padding, Canvas color, Location Dependent Task
Abstract: Recent studies have shown that the addition of zero padding drives convolutional neural networks (CNNs) to encode a significant amount of absolute position information in their internal representations, while a lack of padding precludes position encoding. Additionally, various studies have used image patches on background canvases (e.g., to accommodate that inputs to CNNs must be rectangular) without consideration that different backgrounds may contain varying levels of position information according to their color. These studies give rise to deeper questions about the role of boundary information in CNNs, that are explored in this paper: (i) What boundary heuristics (e.g., padding type, canvas color) enable optimal encoding of absolute position information for a particular downstream task?; (ii) Where in the latent representations do boundary effects destroy semantic and location information?; (iii) Does encoding position information affect the learning of semantic representations?; (iv) Does encoding position information always improve performance? To provide answers to these questions, we perform the largest case study to date on the role that padding and border heuristics play in CNNs. We first show that zero padding injects optimal position information into CNNs relative to other common padding types. We then design a series of novel tasks which allow us to accurately quantify boundary effects as a function of the distance to the border. A number of semantic objectives reveal the destructive effect of dealing with the border on semantic representations. Further, we demonstrate that the encoding of position information improves separability of learned semantic features. Finally, we demonstrate the implications of these findings on a number of real-world tasks to show that position information can act as a feature or a bug.
One-sentence Summary: Study the relationship between boundary effects and absolute position information.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=4UuZwZT0PE
13 Replies

Loading