Adaptive higher order reversible integrators for memory efficient deep learning

25 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: neural ODE, backpropagation, reversible neural networks, learning dynamical systems, high-order integration methods, variable time-steps
Abstract: The depth of networks plays a crucial role in the effectiveness of deep learning. However, the memory requirement for backpropagation scales linearly with the number of layers, which leads to memory bottlenecks during training. Moreover, deep networks are often unable to handle time-series data appearing at irregular intervals. These issues can be resolved by considering continuous-depth networks based on the neural ODE framework in combination with reversible integration methods that allow for variable time-steps. Reversibility of the method ensures that the memory requirement for training is independent of network depth, while variable time-steps are required for assimilating time-series data on irregular intervals. However, at present, there are no known higher-order reversible methods with this property. High-order methods are especially important when a high level of accuracy in learning is required or when small time-steps are necessary due to large errors in time integration of neural ODEs, for instance in context of complex dynamical systems such as Kepler systems and molecular dynamics. The requirement of small time-steps when using a low-order method can significantly increase the computational cost of training as well as inference. In this work, we present an approach for constructing high-order reversible methods that allow adaptive time-stepping. Our numerical tests show the advantages in computational speed when applied to the task of learning dynamical systems.
Supplementary Material: zip
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4524
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview