Keywords: Data Assimilation, Stochastic Dynamic System, Flow matching, Stochastic Interpolants, Inverse Problem
TL;DR: We introduce flow-based data assimilation for stochastic dynamic systems.
Abstract: Data assimilation (DA) is crucial for improving the accuracy of state estimation in complex dynamical systems by integrating observational data with physical models. Traditional solutions rely on either pure model-driven approaches, such as Bayesian filters that struggle with nonlinearity, or data-driven methods using deep learning priors, which often lack generalizability and physical interpretability. Recently, score-based DA methods have been introduced, focusing on learning prior distributions but neglecting explicit state transition dynamics, leading to limited accuracy improvements. To tackle the challenge, we introduce FlowDAS, a novel generative model-based framework using the stochastic interpolants to unify the learning of state transition dynamics and generative priors. FlowDAS achieves stable and observation-consistent inference by initializing from proximal previous states, mitigating the instability seen in score-based methods. Our extensive experiments demonstrate FlowDAS’s superior performance on various benchmarks, from the Lorenz system to high-dimensional fluid super-resolution tasks. FlowDAS also demonstrates improved tracking accuracy on practical Particle Image Velocimetry (PIV) task, showcasing its effectiveness in complex flow field reconstruction.
Submission Number: 45
Loading