Fewer Questions, Better Answers: Efficient Offline Preference-based Reinforcement Learning via In-Dataset Exploration

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: preference-based RL, offline RL, reinforcement learning
TL;DR: An effective query method for offline preference-based RL.
Abstract: Preference-based reinforcement learning (PbRL) can help avoid sophisticated reward designs and align better with human intentions, showing great promise in various real-world applications. However, obtaining human feedback for preferences can be expensive and time-consuming, which forms a strong barrier for PbRL. In this work, we address the problem of low query efficiency in offline PbRL, pinpointing two primary reasons: inefficient exploration and overoptimization of learned reward functions. In response to these challenges, we propose a novel algorithm, Offline PbRL via In-Dataset Exploration (OPRIDE), designed to enhance the query efficiency of offline PbRL. OPRIDE consists of two key features: a principled exploration strategy that maximizes the informativeness of the queries and a discount scheduling mechanism aimed at mitigating overoptimization of the learned reward functions. Through empirical evaluations, we demonstrate that OPRIDE significantly outperforms prior methods, achieving strong performance with notably fewer queries. Moreover, we provide theoretical guarantees of the algorithm's efficiency. Experimental results across various locomotion, manipulation, and navigation tasks underscore the efficacy and versatility of our approach.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5586
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview