Spectral-Refiner: Accurate Fine-Tuning of Spatiotemporal Fourier Neural Operator for Turbulent Flows

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: operator learning, neural operators, Navier-Stokes, PDE, partial differential equations, computational fluid dynamics
TL;DR: Combining the strengths of Fourier Neural Operators and the wisdom from traditional numerical methods to fine-tune the Spatiotemporal modification of FNO to get 10000 times better accuracy.
Abstract: Recent advancements in operator-type neural networks have shown promising results in approximating the solutions of spatiotemporal Partial Differential Equations (PDEs). However, these neural networks often entail considerable training expenses, and may not always achieve the desired accuracy required in many scientific and engineering disciplines. In this paper, we propose a new learning framework to address these issues. A new spatiotemporal adaptation is proposed to generalize any Fourier Neural Operator (FNO) variant to learn maps between Bochner spaces, which can perform an arbitrary-lengthed temporal super-resolution for the first time. To better exploit this capacity, a new paradigm is proposed to refine the commonly adopted end-to-end neural operator training and evaluations with the help from the wisdom from traditional numerical PDE theory and techniques. Specifically, in the learning problems for the turbulent flow modeling by the Navier-Stokes Equations (NSE), the proposed paradigm trains an FNO only for a few epochs. Then, only the newly proposed spatiotemporal spectral convolution layer is fine-tuned without the frequency truncation. The fine-tuning loss function uses a negative Sobolev norm for the first time in operator learning, defined through a reliable functional-type a posteriori error estimator whose evaluation is exact thanks to the Parseval identity. Moreover, unlike the difficult nonconvex optimization problems in the end-to-end training, this fine-tuning loss is convex. Numerical experiments on commonly used NSE benchmarks demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers under certain conditions.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7312
Loading