When Personalization Meets Reality: A Multi-Faceted Analysis of Personalized Preference Learning

ACL ARR 2025 February Submission4333 Authors

15 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: While Reinforcement Learning from Human Feedback (RLHF) is widely used to align Large Language Models (LLMs) with human preferences, it typically assumes homogeneous preferences across users, overlooking diverse human values and minority viewpoints. Although personalized preference learning addresses this by tailoring separate preferences for individual users, the field lacks standardized methods to assess its effectiveness. We present a multi-faceted evaluation framework that measures not only performance but also fairness, unintended effects, and adaptability across varying levels of preference divergence. Through extensive experiments comparing eight personalization methods across three preference datasets, we demonstrate that performance differences between methods could reach 36% when users strongly disagree, and personalization can introduce up to 20% safety misalignment. These findings highlight the critical need for holistic evaluation approaches to advance the development of more effective and inclusive preference learning systems.
Paper Type: Long
Research Area: Human-Centered NLP
Research Area Keywords: Large Language Models, Personalization, RLHF, Evaluation
Languages Studied: English
Submission Number: 4333
Loading