SpeedyZero: Mastering Atari with Limited Data and TimeDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Reinforcement Learning System, Distributed Training, Model-Based Reinforcement Learning
TL;DR: SpeedyZero is a distributed model-based RL training system based on EfficientZero, featuring fast training speed and high sample efficiency.
Abstract: Many recent breakthroughs of deep reinforcement learning (RL) are mainly built upon large-scale distributed training of model-free methods using millions to billions of samples. On the other hand, state-of-the-art model-based RL methods can achieve human-level sample efficiency but often take a much longer over all training time than model-free methods. However, high sample efficiency and fast training time are both important to many real-world applications. We develop SpeedyZero, a distributed RL system built upon a state-of-the-art model-based RL method, EfficientZero, with a dedicated system design for fast distributed computation. We also develop two novel algorithmic techniques, Priority Refresh and Clipped LARS, to stabilize training with massive parallelization and large batch size. SpeedyZero maintains on-par sample efficiency compared with EfficientZero while achieving a 14.5X speedup in wall-clock time, leading to human-level performances on the Atari benchmark within 35 minutes using only 300k samples. In addition, we also present an in-depth analysis on the fundamental challenges in further scaling our system to bring insights to the community.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
12 Replies