General Invertible Transformations for Flow-based Generative ModelingDownload PDF

Jun 02, 2021 (edited Jul 12, 2021)INNF+ 2021 posterReaders: Everyone
  • Keywords: Invertible Neural Networks, Deep Generative Modeling, Normalizing Flows
  • TL;DR: We present a new class of invertible transformations with an application to flow-based generative models.
  • Abstract: In this paper, we present a new class of invertible transformations with an application to flow-based generative models. We indicate that many well-known invertible transformations in reversible logic and reversible neural networks could be derived from our proposition. Next, we propose two new coupling layers that are important building blocks of flow-based generative models. In the experiments on digit data, we present how these new coupling layers could be used in Integer Discrete Flows (IDF), and that they achieve better results than standard coupling layers used in IDF and RealNVP.
4 Replies

Loading