Scene Editing as Teleoperation: A Case Study in 6DoF Kit Assembly

Published: 23 Oct 2022, Last Modified: 06 Jun 2024IROS 2022EveryoneCC BY 4.0
Abstract: Studies in robot teleoperation have been centered around action specifications—from continuous joint control to discrete end-effector pose control. However, these “robotcentric” interfaces often require skilled operators with extensive robotics expertise. To make teleoperation accessible to nonexpert users, we propose the framework “Scene Editing as Teleoperation” (SEaT), where the key idea is to transform the traditional “robot-centric” interface into a “scene-centric” interface—instead of controlling the robot, users focus on specifying the task’s goal by manipulating digital twins of the real-world objects. As a result, a user can perform teleoperation without any expert knowledge of the robot hardware. To achieve this goal, we utilize a category-agnostic scene-completion algorithm that translates the real-world workspace (with unknown objects) into a manipulable virtual scene representation and an action-snapping algorithm that refines the user input before generating the robot’s action plan. To train the algorithms, we procedurely generated a large-scale, diverse kit-assembly dataset that contains object-kit pairs that mimic real-world object-kitting tasks. Our experiments in simulation and on a real-world system demonstrate that our framework improves both the efficiency and success rate for 6DoF kit-assembly tasks. A user study demonstrates that SEaT framework participants achieve a higher task success rate and report a lower subjective workload compared to an alternative robot-centric interface.
Loading