Transformers for Mixed-type Event Sequences

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: marked temporal point processes, generative modeling, autoregressive models, transformers, time series
TL;DR: We propose a unified transformer framework to model mixed-type event sequences
Abstract: Event sequences appear widely in domains such as medicine, finance, and remote sensing, yet modeling them is challenging due to their heterogeneity: sequences often contain multiple event types with diverse structures—for example, electronic health records that mix discrete events like medical procedures with continuous lab measurements. Existing approaches either tokenize all entries, violating natural inductive biases, or ignore parts of the data to enforce a consistent structure. In this work, we propose a simple yet powerful Marked Temporal Point Process (MTPP) framework for modeling event sequences with flexible structure, using a single unified model. Our approach employs a single autoregressive transformer with discrete and continuous prediction heads, capable of modeling variable-length, mixed-type event sequences. The continuous head leverages an expressive normalizing flow to model continuous event attributes, avoiding the numerical integration required for inter-event times in most competing methods. Empirically, our model excels on both discrete-only and mixed-type sequences, improving prediction quality and enabling interpretable uncertainty quantification. We make our code public at https://github.com/czi-ai/FlexTPP.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 11098
Loading