MetaP: How to Transfer Your Knowledge on Learning Hidden PhysicsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: meta-learning, neural operator, parametric PDEs
Abstract: Gradient-based meta-learning methods have primarily focused on classical machine learning tasks such as image classification and function regression, where they were found to perform well by recovering the underlying common representation among a set of given tasks. Recently, PDE-solving deep learning methods, such as neural operators, are starting to make an important impact on learning and predicting the response of a complex physical system directly from observational data. Since the data acquisition in this context is commonly challenging and costly, the call of utilization and transfer of existing knowledge to new and unseen physical systems is even more acute. Herein, we propose a novel meta-learnt approach for transfer-learning knowledge between neural operators, which can be seen as transferring the knowledge of solution operators between governing (unknown) PDEs with varying parameter fields. With the key theoretical observation that the underlying parameter field can be captured in the first layer of the neural operator model, in contrast to typical final-layer transfer in existing meta-learning methods, our approach is a provably universal solution operator for multiple PDE solving tasks. As applications, we demonstrate the efficacy of our proposed approach on heterogeneous material modeling tasks, which shows that our method can handle complex and nonlinear physical response learning tasks while greatly improving the sampling efficiency in new and unseen materials.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
TL;DR: Meta-learning method to transfer hidden physics
Supplementary Material: zip
15 Replies

Loading