Keywords: Optimal Decision Trees, Dynamic Programming, Branch & Bound, Markov Decision Process
Abstract: Decision Tree (DT) Learning is a fundamental problem in Interpretable Machine Learning, yet it poses a formidable optimisation challenge. Despite numerous efforts dating back to the early 1990's, practical algorithms have only recently emerged, primarily leveraging Dynamic Programming (DP) and Branch \& Bound (B\&B) techniques. These methods fall into two categories: algorithms like DL8.5, MurTree and STreeD utilise an efficient DP strategy but lack effective bounds for pruning the search space; while algorithms like OSDT and GOSDT employ more efficient pruning bounds but at the expense of a less refined DP strategy. We introduce Branches, a new algorithm that combines the strengths of both approaches. Using DP and B\&B with a novel analytical bound for efficient pruning, Branches offers both speed and sparsity optimisation. Unlike other methods, it also handles non-binary features. Theoretical analysis shows its lower complexity compared to existing methods, and empirical results confirm that Branches outperforms the state-of-the-art in speed, iterations, and optimality.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7443
Loading