Fine-Tuning Games: Bargaining and Adaptation for General-Purpose Models

Published: 23 Jan 2024, Last Modified: 23 May 2024TheWebConf24 OralEveryoneRevisionsBibTeX
Keywords: General-Purpose Technology, Adaptation, Fine-tuning, Game Theory
Abstract: Major advances in Machine Learning (ML) and Artificial Intelligence (AI) increasingly take the form of developing and releasing general-purpose models. These models are designed to be adapted by other businesses and agencies to perform a particular, domain-specific function. This process has become known as adaptation or fine-tuning. This paper offers a model of the fine-tuning process where a Generalist brings the technological product (here an ML model) to a certain level of performance, and one or more Domain-specialist(s) adapts it for use in a particular domain. Both entities are profit-seeking and incur costs when they invest in the technology, and they must reach a bargaining agreement on how to share the revenue for the technology to reach the market. For a relatively general class of cost and revenue functions, we characterize the conditions under which the fine-tuning game yields a profit-sharing solution. We observe that any potential domain-specialization will either contribute, free-ride, or abstain in their uptake of the technology, and we provide conditions yielding these different strategies. We show how methods based on bargaining solutions and sub-game perfect equilibria provide insights into the strategic behavior of firms in these types of interactions, and we find that profit-sharing can still arise even when one firm has significantly higher costs than another. We also provide methods for identifying Pareto-optimal bargaining arrangements for a general set of utility functions.
Track: Economics, Online Markets, and Human Computation
Submission Guidelines Scope: Yes
Submission Guidelines Blind: Yes
Submission Guidelines Format: Yes
Submission Guidelines Limit: Yes
Submission Guidelines Authorship: Yes
Student Author: Yes
Submission Number: 313
Loading