Keywords: Neural network, explainable AI, optimizer.
Abstract: Deep learning has revolutionized human society, yet the black-box nature of deep neural networks hinders further application to reliability-demanded industries. In the attempt to unpack them, many works observe or impact internal variables to improve the comprehensibility and invertibility of the black-box models. However, existing methods rely on intuitive assumptions and lack mathematical guarantees. To bridge this gap, we introduce Bort, an optimizer for improving model explainability with boundedness and orthogonality constraints on model parameters, derived from the sufficient conditions of model comprehensibility and invertibility. We perform reconstruction and backtracking on the model representations optimized by Bort and observe a clear improvement in model explainability. Based on Bort, we are able to synthesize explainable adversarial samples without additional parameters and training. Surprisingly, we find Bort constantly improves the classification accuracy of various architectures including ResNet and DeiT on MNIST, CIFAR-10, and ImageNet. Code: https://github.com/zbr17/Bort.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Optimization (eg, convex and non-convex optimization)
TL;DR: We propose an optimizer, Bort, for training explainable neural networks with boundedness and orthogonality constraints.
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/bort-towards-explainable-neural-networks-with/code)
12 Replies
Loading