Learning Multi-Faceted Prototypical User Interests

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: multi-faceted representation, user interests, item characteristics
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: We seek to uncover the latent interest units from behavioral data to better learn user preferences under the VAE framework. Existing practices tend to ignore the multiple facets of item characteristics, which may not capture it at appropriate granularity. Moreover, current studies equate the granularity of item space to that of user interests, which we postulate is not ideal as user interests would likely map to a small subset of item space. In addition, the compositionality of user interests has received inadequate attention, preventing the modeling of interactions between explanatory factors driving a user's decision. To resolve this, we propose to align user interests with multi-faceted item characteristics. First, we involve prototype-based representation learning to discover item characteristics along multiple facets. Second, we compose user interests from uncovered item characteristics via binding mechanism, separating the granularity of user preferences from that of item space. Third, we design a dedicated bi-directional binding block, aiding the derivation of compositional user interests. On real-world datasets, the experimental results demonstrate the strong performance of our proposed method compared to a series of baselines.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 5185