Keywords: Text to Image Generation, Personalization, LoRAs, Contrastive Learning, Generative Models, Low Rank Adaptation
TL;DR: CLoRA is a novel method for composing multiple Low-Rank Adaptation (LoRA) models by leveraging contrastive learning and attention maps to create composite images that faithfully merge multiple concepts or styles.
Abstract: Low-Rank Adaptation (LoRA) has emerged as a powerful and popular technique for personalization, enabling efficient adaptation of pre-trained image generation models for specific tasks without comprehensive retraining. While employing individual pre-trained LoRA models excels at representing single concepts, such as those representing a specific dog or a cat, utilizing multiple LoRA models to capture a variety of concepts in a single image still poses a significant challenge. Existing methods often fall short, primarily because the attention mechanisms within different LoRA models overlap, leading to scenarios where one concept may be completely ignored (e.g., omitting the dog) or where concepts are incorrectly combined (e.g., producing an image of two cats instead of one cat and one dog). We introduce CloRA, a training-free approach that addresses these limitations by updating the attention maps of multiple LoRA models at test-time, and leveraging the attention maps to create semantic masks for fusing latent representations. This enables the generation of composite images that accurately reflect the characteristics of each LoRA. Our comprehensive qualitative and quantitative evaluations demonstrate that CloRA significantly outperforms existing methods in multi-concept image generation using LoRAs. Furthermore, we share our source code and benchmark dataset to promote further research.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3307
Loading