Keywords: statistical guarantees, shallow neural networks, stationary points
Abstract: Since statistical guarantees for neural networks are usually restricted to global optima of intricate objective functions, it is unclear whether these theories explain the performances of actual outputs of neural network pipelines. The goal of this paper is, therefore, to bring statistical theory closer to practice. We develop statistical guarantees for shallow linear neural networks that coincide up to logarithmic factors with the global optima but apply to stationary points and the points nearby. These results support the common notion that neural networks do not necessarily need to be optimized globally from a mathematical perspective. We then extend our statistical guarantees to shallow ReLU neural networks, assuming the first layer weight matrices are nearly identical for the stationary network and the target. More generally, despite being limited to shallow neural networks for now, our theories make an important step forward in describing the practical properties of neural networks in mathematical terms.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6049
Loading