Graph MLP-MixerDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Abstract: Graph Neural Networks (GNNs) have shown great potential in the field of graph representation learning. Standard GNNs define a local message-passing mechanism which propagates information over the whole graph domain by stacking multiple layers. This paradigm suffers from two major limitations, over-squashing and poor long-range dependencies, that can be solved using global attention but significantly increases the computational cost to quadratic complexity. In this work, we consider an alternative approach to overcome these structural limitations while keeping a low complexity cost. Motivated by the recent MLP-Mixer architecture introduced in computer vision, we propose to generalize this network to graphs. This GNN model, namely Graph MLP-Mixer, can make long-range connections without over-squashing or high complexity due to the mixer layer applied to the graph patches extracted from the original graph. As a result, this architecture exhibits promising results when comparing standard GNNs vs. Graph MLP-Mixers on benchmark graph datasets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
21 Replies

Loading