Keywords: Graph Representation, Network Controllability, Graph Classification
TL;DR: We develop a novel graph representation method using network control properties and demonstrate its theoretical merits.
Abstract: Graph representations in fixed dimensional feature space are vital in applying learning tools and data mining algorithms to perform graph analytics. Such representations must encode the graph's topological and structural information at the local and global scales without posing significant computation overhead. This paper employs a unique approach grounded in networked control system theory to obtain expressive graph representations with desired properties. We consider graphs as networked dynamical systems and study their controllability properties to explore the underlying graph structure. The controllability of a networked dynamical system profoundly depends on the underlying network topology, and we exploit this relationship to design novel graph representations using controllability Gramian and related metrics. We discuss the merits of this new approach in terms of the desired properties (for instance, permutation and scale invariance) of the proposed representations. Our evaluation of various benchmark datasets in the graph classification framework demonstrates that the proposed representations either outperform (sometimes by more than 6%), or give similar results to the state-of-the-art embeddings.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
4 Replies
Loading