Keywords: Image and Video Understanding
Abstract: Despite the impressive progress of recent pretraining methods on multimodal tasks, existing methods are inherently biased towards either spatial modeling (e.g., CLIP) or temporal modeling (e.g., V-JEPA), limiting their joint capture of spatial details and temporal dynamics. To this end, we propose UniViT, a cluster-driven unified self-supervised learning framework that effectively captures the structured semantics of both image spatial content and video temporal dynamics through event-level and object-level clustering and discrimination. Specifically, we leverage offline clustering to generate semantic clusters across both modalities. For videos, multi-granularity event-level clustering progressively expands from single-event to structured multi-event segments, capturing coarse-to-fine temporal semantics; for images, object-level clustering captures fine-grained spatial semantics. However, while global clustering provides semantically consistent clusters, it lacks modeling of structured semantic relations (e.g., temporal event structures). To address this, we introduce a contrastive objective that leverages these semantic clusters as pseudo-label supervision to explicitly enforce structural constraints, including temporal event relations and spatial object co-occurrences, capturing structured semantics beyond categories. Meanwhile, UniViT jointly embeds structured object-level and event-level semantics into a unified representation space. Furthermore, UniViT introduces two key components: (i) Unified Rotary Position Embedding integrates relative positional embedding with frequency-aware dimension allocation to support position-invariant semantic learning and enhance the stability of structured semantics in the discrimination stage; and (ii) Variable Spatiotemporal Streams adapt to inputs of varying frame lengths, addressing the rigidity of conventional fixed-input approaches. Extensive experiments across varying model scales demonstrate that UniViT achieves state-of-the-art performance on linear probing, attentive probing, question answering, and spatial understanding tasks.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 5123
Loading